87 research outputs found

    Polyploidy in the Olive Complex (Olea europaea): Evidence from Flow Cytometry and Nuclear Microsatellite Analyses

    Get PDF
    Background Phylogenetic and phylogeographic investigations have been previously performed to study the evolution of the olive tree complex (Olea europaea). A particularly high genomic diversity has been found in north-west Africa. However, to date no exhaustive study has been addressed to infer putative polyploidization events and their evolutionary significance in the diversification of the olive tree and its relatives. Methods Representatives of the six olive subspecies were investigated using (a) flow cytometry to estimate genome content, and (b) six highly variable nuclear microsatellites to assess the presence of multiple alleles at co-dominant loci. In addition, nine individuals from a controlled cross between two individuals of O. europaea subsp. maroccana were characterized with microsatellites to check for chromosome inheritance. Key Results Based on flow cytometry and genetic analyses, strong evidence for polyploidy was obtained in subspp. cerasiformis (tetraploid) and maroccana (hexaploid), whereas the other subspecies appeared to be diploids. Agreement between flow cytometry and genetic analyses gives an alternative approach to chromosome counting to determine ploidy level of trees. Lastly, abnormalities in chromosomes inheritance leading to aneuploid formation were revealed using microsatellite analyses in the offspring from the controlled cross in subsp. maroccana. Conclusions This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation of tetraploids and hexaploids may have played a major role in the diversification of the olive complex in north-west Africa. The fact that polyploidy is found in narrow endemic subspecies from Madeira (subsp. cerasiformis) and the Agadir Mountains (subsp. maroccana) suggests that polyploidization has been favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors of subspp. guanchica and europae

    Screening for affective dysregulation in school-aged children: relationship with comprehensive measures of affective dysregulation and related mental disorders

    Full text link
    Affective dysregulation (AD) is characterized by irritability, severe temper outbursts, anger, and unpredictable mood swings, and is typically classified as a transdiagnostic entity. A reliable and valid measure is needed to adequately identify children at risk of AD. This study sought to validate a parent-rated screening questionnaire, which is part of the comprehensive Diagnostic Tool for Affective Dysregulation in Children (DADYS-Screen), by analyzing relationships with comprehensive measures of AD and related mental disorders in a community sample of children with and without AD. The sample comprised 1114 children aged 8–12 years and their parents. We used clinical, parent, and child ratings for our analyses. Across all raters, the DADYS-Screen showed large correlations with comprehensive measures of AD. As expected, correlations were stronger for measures of externalizing symptoms than for measures of internalizing symptoms. Moreover, we found negative associations with emotion regulation strategies and health-related quality of life. In receiver operating characteristic (ROC) analyses, the DADYS-Screen adequately identified children with AD and provided an optimal cut-off. We conclude that the DADYS-Screen appears to be a reliable and valid measure to identify school-aged children at risk of AD

    Impact of the COVID-19 pandemic on children with and without affective dysregulation and their families

    Full text link
    Analyzing COVID-19-related stress in children with affective dysregulation (AD) seems especially interesting, as these children typically show heightened reactivity to potential stressors and an increased use of maladaptive emotion regulation strategies. Children in out-of-home care often show similar characteristics to those with AD. Since COVID-19 has led to interruptions in psychotherapy for children with mental health problems and to potentially reduced resources to implement treatment strategies in daily life in families or in out-of-home care, these children might show a particularly strong increase in stress levels. In this study, 512 families of children without AD and 269 families of children with AD reported on COVID-19-related stress. The sample comprised screened community, clinical, and out-of-home care samples. Sociodemographic factors, characteristics of child and caregiver before the pandemic, and perceived change in external conditions due to the pandemic were examined as potential risk or protective factors. Interestingly, only small differences emerged between families of children with and without AD or between subsamples: families of children with AD and families in out-of-home care were affected slightly more, but in few domains. Improvements and deteriorations in treatment-related effects balanced each other out. Overall, the most stable and strongest risk factor for COVID-19-related stress was perceived negative change in external conditions—particularly family conditions and leisure options. Additionally, caregiver characteristics emerged as risk factors across most models. Actions to support families during the pandemic should, therefore, facilitate external conditions and focus on caregiver characteristic to reduce familial COVID-19-related stress. Trial registration: German Clinical Trials Register (DRKS), ADOPT Online: DRKS00014963 registered 27 June 2018, ADOPT Treatment: DRKS00013317 registered 27 September 2018, ADOPT Institution: DRKS00014581 registered 04 July 2018

    Phylogeography of an endangered disjunct herb: long-distance dispersal, refugia and colonization routes

    Get PDF
    Quaternary glacial cycles appear to have had a consistent role in shaping the genetic diversity and structure of plant species. Despite the unusual combination of the characteristics of the western Mediterranean– Macaronesian area, there are no studies that have specifically examined the effects of palaeoclimatic and palaeogeographic factors on the genetic composition and structure of annual herbs. Astragalus edulis is a disjunct endemic found in the easternmost Canary Islands and the semi-arid areas of north-eastern Africa and south-eastern Iberian Peninsula. This endangered species shows no evident adaptations to long-distance dispersal. Amplified fragment length polymorphism (AFLP) data and plastid DNA sequences were analysed from a total of 360 individuals distributed throughout the range of this species. The modelled potential distribution of A. edulis under current conditions was projected over the climatic conditions of the Last Interglacial (130 ka BP) and Last Glacial Maximum (21 ka BP) to analyse changes in habitat suitability and to look for associations between the modelling and genetic results. Amplified fragment length polymorphism analysis showed clear phylogeographic structure with four distinct genetic clusters. Approximate Bayesian computation (ABC) models based on plastid DNA sequences indicated a Middle Pleistocene long-distance dispersal event as the origin of the populations of the Canary Islands. The models also suggested south-western Morocco as the ancestral area for the species, as well as subsequent colonization of north-eastern Morocco and the Iberian Peninsula. The data compiled indicated the possibility of the presence of refuge areas at favourable locations around the High Atlas and Anti-Atlas mountain ranges. Moreover, palaeodistribution models strongly support the events inferred by ABC modelling and show the potential distribution of the species in the past, suggesting a putative colonization route.This work has been financed by the Spanish Ministerio de Ciencia e Innovación through the projects CGL2012- 32574 and REN2003-09427, as well as by the Andalusian Consejería de Innovación, Ciencia y Tecnología through the project RNM1067. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript

    Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome

    Get PDF
    Aim Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. Location Tundra biome. Time period Data collected between 1964 and 2016. Major taxa studied 295 tundra vascular plant species. Methods We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. Results Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. Main conclusions Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling.Peer reviewe

    Global plant trait relationships extend to the climatic extremes of the tundra biome

    Get PDF
    The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world.Peer reviewe

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma

    Get PDF
    Activating mutations in the gene encoding β-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of β-catenin (β-catnc) and over-activation of the Wnt/β-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the β-catnc cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these β-catnc cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the β-catnc cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-012-0957-9) contains supplementary material, which is available to authorized users
    corecore